This function calculates the variability of consecutive Light levels within a 24h day. Calculated as the ratio of the variance of the differences between consecutive Light levels to the total variance across the day. Calculated with mean hourly Light levels. Higher values indicate more fragmentation.
Arguments
- Light.vector
Numeric vector containing the light data.
- Datetime.vector
Vector containing the time data. Must be POSIXct.
- na.rm
Logical. Should missing values be removed? Defaults to
FALSE
.- as.df
Logical. Should the output be returned as a data frame? If
TRUE
, a data frame with a single column namedintradaily_variability
will be returned. Defaults toFALSE
.
References
Van Someren, E. J. W., Swaab, D. F., Colenda, C. C., Cohen, W., McCall, W. V., & Rosenquist, P. B. (1999). Bright Light Therapy: Improved Sensitivity to Its Effects on Rest-Activity Rhythms in Alzheimer Patients by Application of Nonparametric Methods. Chronobiology International, 16(4), 505–518. doi:10.3109/07420529908998724
Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. Lighting Research & Technology. doi:10.1177/14771535231170500
See also
Other metrics:
bright_dark_period()
,
centroidLE()
,
disparity_index()
,
duration_above_threshold()
,
exponential_moving_average()
,
frequency_crossing_threshold()
,
interdaily_stability()
,
midpointCE()
,
nvRC()
,
nvRD()
,
nvRD_cumulative_response()
,
period_above_threshold()
,
pulses_above_threshold()
,
threshold_for_duration()
,
timing_above_threshold()
Examples
set.seed(1)
N <- 24 * 2
# Calculate metric for two 24 h days with two measurements per hour
dataset1 <-
tibble::tibble(
Id = rep("A", N * 2),
Datetime = lubridate::as_datetime(0) + c(lubridate::minutes(seq(0, N * 60 - 30, 30))),
MEDI = sample(1:1000, N * 2)
)
dataset1 %>%
dplyr::summarise(
"Intradaily variability" = intradaily_variability(MEDI, Datetime)
)
#> # A tibble: 1 × 1
#> `Intradaily variability`
#> <dbl>
#> 1 1.71