These helpers create a publication-ready summary table for light logger datasets. Users can either calculate the metrics, generate overview counts, or render the complete gt table.
This function creates a tibble that gives some high level information about a dataset: How many participants are in there, the number of participant days, how many participant days are complete above a given threshold, how much data is missing, and (if provided) what the photoperiod is.
Usage
summary_overview(
dataset,
Variable.colname = MEDI,
coordinates = NULL,
location = NULL,
site = NULL,
Datetime.colname = Datetime,
Id.colname = Id,
threshold.missing = 0.2,
programmatic.use = FALSE,
handle.gaps = TRUE
)
summary_metrics(
dataset,
Variable.colname = MEDI,
Datetime.colname = Datetime,
Id.colname = Id,
threshold.missing = 0.2,
programmatic.use = FALSE,
handle.gaps = TRUE
)
summary_table(
dataset,
coordinates = NULL,
location = NULL,
site = NULL,
color = "grey",
Variable.colname = MEDI,
Datetime.colname = Datetime,
Id.colname = Id,
threshold.missing = 0.2,
Variable.label = "melanopic EDI (lx)",
histograms = TRUE
)Arguments
- dataset
A data frame containing light logger data.
- Variable.colname
Column containing light exposure values. Expects a symbol; defaults to
MEDIfor compatibility with the built-in datasets.- coordinates
Optional numeric vector of length two containing latitude and longitude (in that order). If supplied, photoperiod information is calculated when the dataset does not already contain a
photoperiodcolumn.- location
Optional location description (e.g. city name).
- site
Optional site description (e.g. country or study site).
- Datetime.colname
Column containing the timestamp information. Expects a symbol; defaults to
Datetime.- Id.colname
Column containing the participant identifier. Expects a symbol; defaults to
Id.- threshold.missing
Proportion of missing data (per participant-day) tolerated before a day is considered incomplete.
- programmatic.use
Whether the function is used by another function. This determines the number of columns to be output. Default is
FALSE- handle.gaps
Whether gaps in the data should be handled. Sets the argument in
remove_partial_data(). Default isTRUE.- color
Color used for histogram accents in the metrics section.
- Variable.label
Label used in the table footnote to describe the light variable.
- histograms
Logical indicating whether histogram spark lines should be added for metrics where applicable.
Value
A tibble with overview metrics (type, name, mean, SD, min,
max, plot). A location_string attribute is attached to the result for
use in summary_table(). If programmatic.use = FALSE, type, SD and
plot are removed.
A tibble with summarized metrics across participant-days and
participant-level stability measures. Columns are compatible with
summary_table().
A gt table.
Examples
sample.data.environment |> summary_overview()
#> # A tibble: 4 × 4
#> name mean min max
#> <chr> <dbl> <dbl> <dbl>
#> 1 Participants 2 NA NA
#> 2 Participant-days 12 6 6
#> 3 Days ≥80% complete 12 6 6
#> 4 Missing/Irregular 0 0 0
sample.data.irregular |> summary_overview()
#> # A tibble: 4 × 4
#> name mean min max
#> <chr> <dbl> <dbl> <dbl>
#> 1 Participants 1 NA NA
#> 2 Participant-days 2 2 2
#> 3 Days ≥80% complete 0 0 0
#> 4 Missing/Irregular 0.49 0.49 0.49
# \donttest{
sample.data.environment |>
filter_Date(length = "3 days") |>
summary_metrics()
#> # A tibble: 15 × 4
#> name mean min max
#> <chr> <dbl> <dbl> <dbl>
#> 1 brightest_10h_mean 12468. 58.9 34659.
#> 2 brightest_10h_midpoint 51523. 48278 54084
#> 3 darkest_5h_mean 0 0 0
#> 4 darkest_5h_midpoint 8986 8978 8994
#> 5 dose 152858. 2197. 420306.
#> 6 duration_above_1000 24635 590 47370
#> 7 duration_above_250 29623. 5810 49350
#> 8 duration_below_1 32978. 27990 39260
#> 9 duration_within_1-10 6338. 1140 17530
#> 10 first_timing_above_250 29791 23648 36184
#> 11 last_timing_above_250 77921 72128 84264
#> 12 mean_timing_above_250 50922. 47993 54354
#> 13 period_above_250 25093. 1230 49350
#> 14 interdaily_stability 0.684 0.598 0.770
#> 15 intradaily_variability 0.614 0.209 1.02
# }
#sample.data.environment |> summary_table(coordinates = c(47,9))
