


We're excited to announce a new online course on analysing wearable light exposure and visual experience time-series data in R.

Who it's for: Post-docs, PhD students, data scientists, and research-active academics working with wearable time-series data of light in R for light data (and distance, spectrum etc).

Format: Two tracks (Beginner & Advanced). Each track is repeated once, with two live webinars per day (morning & evening, CET) to suit global time zones.

Session length: 90 minutes each (theory + live coding + Q&A).

Certificate: Issued on completion.

What to expect

- Live walkthroughs of LightLogR's workflow from import → (pre-)processing → metrics → visualisation.
- Practical, reproducible examples with tidy data principles for both the circadian and visual experience community (including vision science, myopia research, ...).
- Ready-to-reuse code snippets and example datasets.
- Dedicated Q&A with the developer.
- A certificate upon completion.

Prerequisites

- **Beginner:** Basic familiarity with R. No prior LightLogR experience required.
- Advanced: Comfortable with tidy workflows + completion of the beginner track (or equivalent LightLogR experience).

Beginner Course

Programme at a glance

- Orientation to LightLogR.
- Scope & philosophy, tidy workflow design, package tour.
- Data in, sense-check out.
- Import from multiple devices; quick overview plots & summaries.
- Core processing & metrics.
- Dealing with gaps; basic processing; light-exposure metrics.
- Photoperiod & zero inflation.
- Adding photoperiod to data and plots; handling zero-inflated exposure on log scales.

Intended learning outcomes

On completion, participants will be able to...

Knowledge & understanding

- **Describe** the scope, high-level workflow, and tidy-data principles that structure LightLogR.
- Identify common properties of wearable light time-series and recognise typical data issues (e.g., gaps, zero inflation).

Intellectual skills

- **Employ** basic preprocessing options and justify choices for gap handling and log-scale treatment of zero-inflated data.
- **Use** available light-exposure metrics and recognise metrics appropriate to a stated research question.

Subject-specific / practical skills

- Set up LightLogR and import example datasets from supported devices/formats.
- Generate quick overview plots and summarise data for quality checks.
- Apply core processing steps to handle missingness and irregular sampling.
- Compute standard light-exposure metrics using LightLogR functions.
- Annotate datasets and plots with photoperiod information.
- Implement a simple strategy to address zero inflation when working on logarithmic scales.

Transferable skills

- Organise analyses using tidy, reproducible workflows suitable for collaboration.
- Present results using clear plots and concise summaries for meetings and manuscripts.

Notes on scope: Outcomes emphasise demonstrable skills achievable via short, focused exemplars and templated code within 90-minute sessions per webinar. Longer projects (e.g., large-scale benchmarking or bespoke modelling) are intentionally out of scope.

Advanced course

Programme at a glance

- Merging streams.
- Join light with sleep (and other) data; compute advanced metrics.
- Patterns in practice & visual finesse.
- Detecting clusters of conditions/behaviours; building advanced visualisations.
- Time zones.
- Analysing multi-time-zone datasets; workflow tips for larger studies.
- Beyond intensity.
- Working with spectral measurements and distance.

Intended learning outcomes

On completion, participants will be able to...

Knowledge & understanding

- **Explain** key considerations when integrating light with auxiliary streams (e.g., sleep) and when analysingmulti-time-zone cohorts.
- **Summarise** how spectral information and distance measures can inform light-related analyses.

Intellectual skills

- **Design** a small joined-data workflow that derives advanced metrics from merged light-sleep streams.
- **Employ** basic clustering approaches to identify patterns/conditions and interpret their relevance to study aims.

Subject-specific / practical skills

- Merge LightLogR outputs with sleep (or other) data using tidy joins.
- Compute advanced metrics on the combined dataset.
- Align and visualise recordings collected across different time zones.
- Create more advanced visualisations (e.g., layered/faceted/annotated) for complex study designs.
- Process example spectral measurements and calculate simple distance measures relevant to light exposure.

Transferable skills

Document and package analysis steps for team reuse, and transparent reporting.

Notes on scope: Outcomes emphasise demonstrable skills achievable via short, focused exemplars and templated code within 90-minute sessions per webinar. Longer projects (e.g., large-scale benchmarking or bespoke modelling) are intentionally out of scope.

Funders

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EURAMET. Neither the European Union nor the granting authority can be held responsible for them.

The project has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.

