cut_Datetime
is a wrapper around lubridate::round_date()
(and friends)
combined with dplyr::mutate()
, to create a new column in a light logger
dataset with a specified binsize. This can be "3 hours"
, "15 secs"
, or
"0.5 days"
. It is a useful step between a dataset and a visualization or
summary step.
Usage
cut_Datetime(
dataset,
unit = "3 hours",
type = c("round", "floor", "ceiling"),
Datetime.colname = Datetime,
New.colname = Datetime.rounded,
group_by = FALSE,
...
)
Arguments
- dataset
A light logger dataset. Expects a
dataframe
. If not imported by LightLogR, take care to choose a sensible variable for theDatetime.colname
.- unit
Unit of binning. See
lubridate::round_date()
for examples. The default is"3 hours"
.- type
One of
"round"
(the default),"ceiling"
or"floor"
. Setting chooses the relevant function from lubridate.- Datetime.colname
column name that contains the datetime. Defaults to
"Datetime"
which is automatically correct for data imported with LightLogR. Expects asymbol
. Needs to be part of thedataset
.- New.colname
Column name for the added column in the
dataset
.- group_by
Should the data be grouped by the new column? Defaults to
FALSE
- ...
Parameter handed over to
lubridate::round_date()
and siblings
Examples
#compare Datetime and Datetime.rounded
sample.data.environment %>%
cut_Datetime() %>%
dplyr::slice_sample(n = 5)
#> # A tibble: 10 × 4
#> # Groups: Id [2]
#> Datetime Datetime.rounded MEDI Id
#> <dttm> <dttm> <dbl> <chr>
#> 1 2023-08-15 01:30:02 2023-08-15 03:00:00 0 Environment
#> 2 2023-08-19 09:34:02 2023-08-19 09:00:00 43415. Environment
#> 3 2023-08-20 18:00:02 2023-08-20 18:00:00 31626. Environment
#> 4 2023-08-17 23:00:32 2023-08-18 00:00:00 0 Environment
#> 5 2023-08-17 16:49:02 2023-08-17 18:00:00 50903. Environment
#> 6 2023-08-18 23:19:31 2023-08-19 00:00:00 0 Participant
#> 7 2023-08-15 06:05:51 2023-08-15 06:00:00 0.64 Participant
#> 8 2023-08-15 12:31:21 2023-08-15 12:00:00 2514. Participant
#> 9 2023-08-15 14:02:01 2023-08-15 15:00:00 213. Participant
#> 10 2023-08-20 17:20:01 2023-08-20 18:00:00 245. Participant